Correction: Neonatal Exendin-4 Reduces Growth, Fat Deposition and Glucose Tolerance during Treatment in the Intrauterine Growth-Restricted Lamb
نویسندگان
چکیده
BACKGROUND IUGR increases the risk of type 2 diabetes mellitus (T2DM) in later life, due to reduced insulin sensitivity and impaired adaptation of insulin secretion. In IUGR rats, development of T2DM can be prevented by neonatal administration of the GLP-1 analogue exendin-4. We therefore investigated effects of neonatal exendin-4 administration on insulin action and β-cell mass and function in the IUGR neonate in the sheep, a species with a more developed pancreas at birth. METHODS Twin IUGR lambs were injected s.c. daily with vehicle (IUGR+Veh, n = 8) or exendin-4 (1 nmol.kg⁻¹, IUGR+Ex-4, n = 8), and singleton control lambs were injected with vehicle (CON, n = 7), from d 1 to 16 of age. Glucose-stimulated insulin secretion and insulin sensitivity were measured in vivo during treatment (d 12-14). Body composition, β-cell mass and in vitro insulin secretion of isolated pancreatic islets were measured at d 16. PRINCIPAL FINDINGS IUGR+Veh did not alter in vivo insulin secretion or insulin sensitivity or β-cell mass, but increased glucose-stimulated insulin secretion in vitro. Exendin-4 treatment of the IUGR lamb impaired glucose tolerance in vivo, reflecting reduced insulin sensitivity, and normalised glucose-stimulated insulin secretion in vitro. Exendin-4 also reduced neonatal growth and visceral fat accumulation in IUGR lambs, known risk factors for later T2DM. CONCLUSIONS Neonatal exendin-4 induces changes in IUGR lambs that might improve later insulin action. Whether these effects of exendin-4 lead to improved insulin action in adult life after IUGR in the sheep, as in the PR rat, requires further investigation.
منابع مشابه
Effect of placental restriction and neonatal exendin-4 treatment on postnatal growth, adult body composition, and in vivo glucose metabolism in the sheep.
Intrauterine growth restriction (IUGR) increases the risk of adult type 2 diabetes (T2D) and obesity. Neonatal exendin-4 treatment can prevent diabetes in the IUGR rat, but whether this will be effective in a species where the pancreas is more mature at birth is unknown. Therefore, we evaluated the effects of neonatal exendin-4 administration after experimental restriction of placental and feta...
متن کاملNeonatal exendin-4 treatment reduces oxidative stress and prevents hepatic insulin resistance in intrauterine growth-retarded rats.
Intrauterine growth retardation (IUGR) has been linked to the development of type 2 diabetes in adulthood. We have developed an IUGR model in the rat whereby the animals develop diabetes later in life. Previous studies demonstrate that administration of the long-acting glucagon-like-peptide-1 agonist, exendin-4, during the neonatal period prevents the development of diabetes in IUGR rats. IUGR ...
متن کاملNeonatal exendin-4 prevents the development of diabetes in the intrauterine growth retarded rat.
Uteroplacental insufficiency resulting in fetal growth retardation is a common complication of pregnancy and a significant cause of perinatal morbidity and mortality. Epidemiological studies show an increased incidence of type 2 diabetes in humans who were growth retarded at birth. The mechanisms by which an abnormal intrauterine milieu leads to the development of diabetes in adulthood are not ...
متن کاملMaternal Low-Protein Diet or Hypercholesterolemia Reduces Circulating Essential Amino Acids and Leads to Intrauterine Growth Restriction
OBJECTIVE We have examined maternal mechanisms for adult-onset glucose intolerance, increased adiposity, and atherosclerosis using two mouse models for intrauterine growth restriction (IUGR): maternal protein restriction and hypercholesterolemia. RESEARCH DESIGN AND METHODS For these studies, we measured the amino acid levels in dams from two mouse models for IUGR: 1) feeding C57BL/6J dams a ...
متن کاملMaternal Lipids as Strong Determinants of Fetal Environment and Growth in Pregnancies With Gestational Diabetes Mellitus
OBJECTIVE To determine the contribution of maternal glucose and lipids to intrauterine metabolic environment and fetal growth in pregnancies with gestational diabetes mellitus (GDM). RESEARCH DESIGN AND METHODS In 150 pregnancies, serum triglycerides (TGs), cholesterol, free fatty acids (FFAs), glycerol, insulin, and glucose were determined in maternal serum and cord blood during the 3rd trim...
متن کامل